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Abstract. In this paper we examine the existence of anharmonic localized modes using a full two-
body potential to describe all interactions between particles in a zinc-blende-structure material, and
we make a comparison with the results obtained with a nearest-neighbour force constant model that
includes interactions up to quartic anharmonicity. We show that for amplitude up to a maximum
displacement of the order of 0.25 Å there are no appreciable differences between the two approaches,
while for the largest amplitudes the force constant model gives unphysical results.

1. Introduction

The study of anharmonicity in crystals has revealed the existence of a new class of localized
modes called intrinsic localized modes (ILMs), which exist in infinite translationally invariant
lattices [1–4]. The first studies showed the existence of ILMs above the top of the harmonic
phonon branch for one-dimensional lattices [5–7]. These modes were obtained by using a
force constant approach based on quartic anharmonicity. Subsequent studies revealed that the
inclusion of cubic anharmonicity, which makes the potential softer, reduces the frequency of
the ILMs [8, 9]. In particular, in a diatomic chain, if the cubic term is sufficiently large, the
modes are confined in the gap region [10]. More recently, calculations based on the use of
two-body potentials, which include anharmonicity to all orders, demonstrate that ILMs exist
only in the gap [11, 12]. They are a general feature of one-dimensional diatomic lattices.
Molecular dynamics simulations verify that these modes do not depend on dimensionality and
are also present in diatomic three-dimensional crystals. These calculations show that ILMs
exist for a very large range of amplitude of the displacements up to one nanometre. Recently,
ILMs due to anharmonicity have been observed in crystalline arrays of charged linear chains
of PtCl with resonant Raman scattering [13].

In the present work we consider a diatomic chain, with two alternating masses which
represent a row of atoms along the 〈111〉 direction of a zinc-blende structure. The study
of simple one-dimensional systems is of particular significance because they provide an
interpretative framework for understanding the results of the more complex three-dimensional
molecular dynamics simulations. In a previous paper [14] we investigated a row of GaN which
has a relatively large phonon gap. We use a force constant model that includes harmonic, cubic
and quartic anharmonicity (K2, K3, K4). We show that ILMs are present in the gap for small
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maximum values of the displacement amplitude, up to 0.3–0.4 Å. The aim of the present paper
is twofold. First, to examine the existence of anharmonic localized modes when a two-body
potential is used to describe the interactions among all particles in the zinc-blende-structure
material GaN and, second, to make a comparison with the results obtained with a nearest-
neighbour force constant model that includes interactions up to quartic anharmonicity. We
investigate at what amplitude the frequencies of the ILMs obtained with the force constant
model start to differ from the results given by the full potential. We treat the problem
numerically as discussed in the previous papers, by solving the equations of motion for a
chain containing a large number of atoms, so that the results are independent of the chosen
number of atoms.

The paper is organized as follows. In section 2 we first introduce the two-body potential
for a 〈111〉 row of GaN atoms and the force constant model. Then we discuss the equations
of motion in the rotating-wave approximation (RWA) for the localized modes. In section 3
we discuss the results from both models for localized modes in the interior of the chain. In
section 4 we discuss surface modes with a pair of end atoms weakly bound. An end atom can
be connected to its interior neighbour by either a strong or a weak interaction. The case of a
pair of atoms strongly bound is also discussed. Finally, in section 5 we present the conclusions
of the paper.

2. Potential and equations of motion

We consider a one-dimensional diatomic lattice with two different alternating masses. The
unit cell is taken to have the light atom at the origin. This atom is strongly bonded to the heavy
atom of the basis, which in turn is weakly bonded to the next neighbouring light atom. For
the strong interaction in our one-dimensional system we use the potential of Zapol et al [15],
containing a repulsive exponential part and an attractive Coulombic part, constructed to match
bulk properties, such as the total energy and bulk modulus of the three-dimensional GaN. To
describe the weak interaction for our one-dimensional system we use the same form of the
potential, but we change the parameters of the long-range Coulomb part to fit the phonon
branches in the 〈111〉 direction. Harmonic, cubic and quartic strong and weak force constants
are derived from these potentials. In this case the equations of motion take a simple form.
Considering nearest-neighbour interactions, the equation of motion of the particle at lattice
site n can be written as

mnün = V ′
n+1(un+1 − un) − V ′

n(un − un−1) (1)

where un is the displacement of atom n and Vn(un+1 − un) is the interaction potential of
neighbouring atoms. For n even, Vn(un+1 −un) is the potential relative to the strong interaction
and mn is the mass of the light atom. For n odd, Vn(un+1 − un) is the weak potential and mn is
the mass of the heavy atom. The prime means the spatial derivative. To solve equation (1) we
use the rotating-wave approximation, so the equations of motion represent oscillators which
oscillate periodically in time with frequency ω. To apply the RWA we Fourier transform the
potential, retaining the zero-order term and the first-order term in cos(ωt). The details of the
time Fourier transform are given in the paper of Kiselev et al [11].

We seek stationary solutions of the type

un = A(ξn cos(ωt) + φn) (2)

so that the normalized vibrational amplitude ξn and the static displacement φn related to the
local expansion of the anharmonic lattice are independent of time. A is the maximum amplitude
of the mode. Substituting equation (2) in equation (1) and making the RWA we obtain a system
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of coupled equations for the static and dynamical displacements. To solve this system we use
a routine based on the Newton scaled gradient method. We start with three atoms and an initial
guess for the displacements (ξ0 = 1, φ0 = 0, ξ−1 = ξ1 = 0, φ−1 = φ1 = 0). The routine then
determines the solution through an iterative procedure. One atom is then added to each end
of the chain and the calculation of the displacements is repeated. The iterative procedure is
continued up to 200 atoms. The addition at step n of two atoms acts as a perturbation on the
chain. If the iterative perturbation does not destroy the mode, we consider the mode to be a
stable solution.

3. Bulk modes

The linear chain of zinc-blende structure we are considering has no centre of inversion, so that
we cannot classify the modes as even or odd as done in the case of the diamond structure [16]
or the alkali halide chains [10]. However, the modes can be classified as quasi-even and
quasi-odd to indicate the relation to the corresponding modes when the centre of inversion is
present. Here the modes are classified considering the displacement pattern of the light mobile
atoms. We start by studying the ILMs in the interior of the chain by using the full potential
previously described and by performing the calculations also for the force constant model.
We consider displacements with maximum amplitude A up to 0.5–0.6 Å. Results obtained for
the frequencies of the modes both for the full-potential model and the force constant model
are presented in figure 1. One notes that the frequencies obtained with the full potential lie
inside the gap for any value of the amplitude, whereas with the force constant model the modes
lie inside the gap for small amplitudes, but go above the top of the optical branch for large
amplitudes. However, we show here that for amplitudes of 0.30 Å or less the two approaches
give frequencies that are within 10% of each other. In both approaches we have found that the
quasi-even and quasi-odd modes are nearly degenerate in frequency.

In figure 2 we present the displacement pattern for the quasi-odd mode for the full-potential
case. The maximum amplitude is on the light atom. The loss of symmetry mainly affects the
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Figure 1. Frequency of bulk gap localized modes versus amplitude A for the full-potential model
(�) and the force constant model (�).
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Figure 2. Normalized displacements ξn of the bulk ‘quasi-odd’ localized mode for amplitude
A = 0.20 in the full-potential model. Only the central part of the chain is shown. The static
displacements φn are shown as ♦. Open diamonds indicate the light atoms; full diamonds indicate
the heavy atoms.

displacement of the heavy atom that is strongly bound to the light atom at the origin. The
displacement pattern of the quasi-odd mode obtained using the force constant model for the
same value of A = 0.20 Å is very similar to the one presented in figure 2 and is not presented.
The displacement pattern of the quasi-even mode is shown in figure 3. Again up to A = 0.25 Å
the displacement pattern obtained with the full-potential model and with the force constant
model are very similar, so we present only the results obtained with the full potential. The
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Figure 3. As figure 2, but for the bulk ‘quasi-even’ localized mode for amplitude A = 0.20 in the
full-potential model. The static displacements φn are shown as ♦.
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pattern of the quasi-even modes and of the quasi-odd modes becomes identical to the pattern
of the purely even end purely odd modes shown [10] for diatomic chains with different masses
and equal force constants and for diamond-like chains [16] with equal masses and different
force constants.

4. Surface modes

We consider a chain of 200 atoms with free-end boundary conditions. The absence of inversion
symmetry in the zinc-blende structure permits several types of surface mode which depend on
the strength of the interaction potential of the end atom pair and on the mass of the surface
atom. We found the existence of two types of mode, as in the case of the diatomic chain. One,
called S1, which exists also in the harmonic case, is related to the termination of the crystal
with the light atom and the other, called S2, entirely due to the anharmonicity, is related to the
heavy end atom. For small amplitudes the frequency of the S1 mode tends to the frequency of
the harmonic surface mode, while the S2 surface mode becomes a non-localized mode in the
optical branch.

We start by discussing the case of a pair of end atoms weakly bound. For a light atom
at the end of the chain the boundary condition is ξ0 = 1. The S1 mode has its maximum
displacement on the end atom. It is derived from the bottom of the optical branch as in the
harmonic case. The frequency as a function of the amplitude A is presented in figure 4 both
for the full-potential case and for the force constant case. One notices that the two models give
almost the same frequency for amplitudes up to 0.25 Å. For larger amplitudes the results for
the force constant model become unphysical and the frequency rises over the top of the optical
branch. The displacement pattern of the mode S1, for the full potential, is plotted in figure 5
for A = 0.20 Å and is similar to that of the force constant model. The interior strongly bound
pairs of atoms move as single entities. The asymmetry of the potential causes an expansion of
the chain. For the heavy-end-atom case, the frequencies of the surface mode S2 are presented
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Figure 4. Frequency of surface gap modes S1 and S2 versus amplitude A for a chain with a weakly
bound end atom for the full-potential model (� and �) and the force constant model (� and ©).
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Figure 5. Normalized displacements ξn of the surface localized mode S1 with a light end atom
weakly bound for amplitude A = 0.20 in the full-potential model. The static displacements φn are
shown as ♦.

in figure 4 both for the full-potential model and for the force constant model. The boundary
condition for the displacement of the light atom next to the heavy end atom is ξ1 = 1. The
displacement patterns for the S2 mode, very similar in the two cases, are illustrated in figure 6
for the full potential. The largest displacement occurs on the light atom next to the heavy end
atom and there is a noticeable static expansion at the surface. The force constant model breaks
down for A > 0.3–0.4 Å.
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Figure 6. Normalized displacements ξn of the surface localized mode S2 with a heavy end atom
weakly bound for amplitude A = 0.25 in the (K2, K3, K4) model. The static displacements φn

are shown as ♦.
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We pass now to the case of the end pair of atoms strongly bound. The frequencies of the
S1 and S2 modes, both for the full-potential model and for the force constant model, are shown
in figure 7. By comparing these results with those of the end pair weakly coupled, one sees
that only the frequency of the S1 mode is affected by the strength of the interaction with the
first interior atom which enhances the frequency of this mode. The displacement patterns for
A = 0.2 Å are very similar for the two models of interaction. For the S2 mode we present in
figure 8 the results relative to the full potential. The strong interaction between an end pair
of atoms causes the displacement of the first interior atom to be larger than that of the second
interior atom. The displacement pattern of the S1 mode is given in figure 9 and is rather similar
to that for a weakly bound end pair.
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Figure 7. Frequency of surface localized modes S1 and S2 with the end atom strongly bound versus
amplitude A for the full-potential model (� and �) and the force constant model (� and ©).

5. Conclusions

In this paper we have studied intrinsic localized modes of vibration in a finite diatomic chain
with alternating interactions. We have used a realistic two-body potential to describe the
interactions between the Ga–N pair of atoms of the basis and the Ga–N pair in adjoining bases.
We compare these results with those obtained with a force constant model by expanding the
potential up to the fourth order. We show that for the amplitude of the maximum displacement
of the order of 0.25 Å there are no appreciable differences between the two approaches. For the
largest amplitudes the force constant model becomes unphysical. The quartic anharmonicity
force constants dominate and give a mode with frequency above the top of the optical branch.
With the full potential, intrinsic localized modes are present in the gap for a very large range of
amplitudes, up to 1.0 Å. Since the crystal considered here has no centre of inversion symmetry,
the localized modes cannot be classified as having even or odd parity. In agreement with
our previous analysis, we found two types of localized mode in the gap—one of quasi-odd
symmetry and the other of quasi-even symmetry. Due to the presence of the two different
nearest-neighbour interactions in the zinc-blende-structure chain, the crystal can be truncated
to create a surface in several different ways. For all of the possibilities we found surface modes
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Figure 8. Normalized displacements ξn of the surface localized mode S2 with a heavy end atom
strongly bound for amplitude A = 0.20 in the full-potential model. The static displacements φn

are shown as ♦.
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Figure 9. Normalized displacements ξn of the surface localized mode S1 with a light end atom
strongly bound for amplitude A = 0.20 in the full-potential model. The static displacements φn

are shown as ♦.

with the maximum displacement on a light atom. In the case of a light end atom weakly bound
to the next interior neighbour we have found a displacement pattern very close to that of the
harmonic surface mode. For bulk and surface intrinsic localized modes we have shown that a
force constant model which includes harmonic, cubic and quartic anharmonic force constants
derived from a realistic potential is appropriate to the study of intrinsic localized modes for an
amplitude not larger than 0.25 Å. Moreover, this is the range of the amplitude that should be
detected experimentally without damaging the crystal, by introducing vacancies or melting.
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The insight gained by the use of a simple one-dimensional force constant model can be very
useful in the interpretation of more complex 3D molecular dynamics calculations. Because
of its large gap, GaN seems to be a good material for use in an experimental investigation of
localized modes.
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